Youtube 標題: 【吳銘數學】110-高二數學(下) |矩陣—基本紀錄| 20160502 二勤。

授課教師:吳銘祥老師

影片內容:高二數學(下) 矩陣—基本紀錄

課堂實境: 20160502 二勤 發佈日期: 2016 年 5 月 2 日

課堂講義:

影片長度: 16min

影片網址:https://youtu.be/Yc6sWtrc7SY

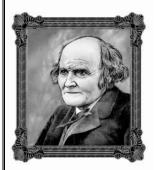
吳銘祥老師數學教室:http://moodle.fg.tp.edu.tw/~tfgcoocs/...

3-2 矩陣的運算

日常生活中的統計表格,常可以用矩陣以更簡化的方式呈現。

年級	高中部					
科別	一年級		二年級		三年級	
	班數	人數	班數	人數	班數	人數
普通科	25	1026	25	1018	26	1081
승 計	25	1026	25	1018	26	1081
總班數/總學生數	76 班 3,125 人					

甲、矩陣的意義與相等



<u>凱利</u> (Arthur Cayley, <u>英</u>, 1821~1895)是矩陣理論的先驅.

喜愛爬山的他,曾說「雖然上坡費勁且累,但攻頂時的興奮,

就像解決一道數學難題時的體會」

*若一矩陣有 m 列 n 行,則稱其為一個 $m \times n$ 階矩陣, $m \times n$ 為其階數"

記為
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \ddots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = [a_{ij}]_{m \times n}$$

*n×n 階矩陣稱為 n 階方陣

*零矩陣:每個元都是 0 的矩陣,以 $O_{m\times n}$ 表示 $m\times n$ 階的零矩陣。

*單位方陣:主對角線均為 1,其他元素均為 0 的方陣,例如 I_3 = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ 。

*矩陣的相等

當兩個矩陣A和B同階(即列數相等且行數相等),而且它們相同位置的元都相等時,稱矩陣A與B相等,記作A=B

範例1.

已知矩陣
$$A = \left[a_{ij}\right]_{2\times 3}$$
,且每一個元 $a_{ij} = i + 2j$,求 A

類題1

已知矩陣
$$B = \begin{bmatrix} b_{ij} \end{bmatrix}_{2\times 3}$$
,且每一個元 $b_{ij} = i + j$,求 B

範例2.

已知
$$\begin{bmatrix} 3 & b & 2 \\ a & 1 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 7 & 2 \\ 5 & c & d \end{bmatrix}$$
, 求 a , b , c , d 的值

類題1

已知
$$\begin{bmatrix} a+b & 3c-d \\ 3a-b & c+d \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 5 & 7 \end{bmatrix}$$
,求 a , b , c , d 的值

範例3.

設 $\mathbf{A} = \left[a_{ij}\right]_{2\times 2}$ 滿足 $a_{ij} \in -2,0,1,2,3$,即二階方陣 A 的每個元素為 $-2 \times \mathbf{0} \times \mathbf{1} \times \mathbf{1}$

2、3之一,則:

- (1)上述條件共可造出______個不同的 A 方陣
- (2) $A^T = A$,可造出______個不同的 A 方陣
- (3)若 $A^{T} = -A$,可造出______個不同的 A 方陣

類題1

設 $A = \left[a_{ij}\right]_{2\times 2}$ 滿足 $a_{ij} \in [0,1,2]$,則:

- (1)上述條件共可造出______個不同的 A 方陣
- (2)若 $A^{T} = A$,可造出______個不同的 A 方陣
- (3)若 $A^{T} = -A$,可造出______個不同的 A 方陣